Evolution of two-dimensional lump nanosolitons for the Zakharov-Kuznetsov and electromigration equations.
نویسندگان
چکیده
The evolution of lump solutions for the Zakharov-Kuznetsov equation and the surface electromigration equation, which describes mass transport along the surface of nanoconductors, is studied. Approximate equations are developed for these equations, these approximate equations including the important effect of the dispersive radiation shed by the lumps as they evolve. The approximate equations show that lump-like initial conditions evolve into lump soliton solutions for both the Zakharov-Kuznetsov equation and the surface electromigration equations. Solutions of the approximate equations, within their range of applicability, are found to be in good agreement with full numerical solutions of the governing equations. The asymptotic and numerical results predict that localized disturbances will always evolve into nanosolitons. Finally, it is found that dispersive radiation plays a more dominant role in the evolution of lumps for the electromigration equations than for the Zakharov-Kuznetsov equation.
منابع مشابه
Solution of the fractional Zakharov-Kuznetsov equations by reduced dierential transform method
In this paper an approximate analytical solution of the fractional Zakharov-Kuznetsov equations will be obtained with the help of the reduced differential transform method (RDTM). It is in-dicated that the solutions obtained by the RDTM are reliable and present an effective method for strongly nonlinear fractional partial differential equations.
متن کاملSolitons And Periodic Solutions To The Generalized Zakharov-Kuznetsov Benjamin-Bona-Mahoney Equation
This paper studies the generalized version of theZakharov-Kuznetsov Benjamin-Bona-Mahoney equation. The functionalvariable method as well as the simplest equation method areapplied to obtain solitons and singular periodic solutions to theequation. There are several constraint conditions that arenaturally revealed in order for these specialized type ofsolutions to exist. The results of this pape...
متن کاملSTABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.
Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...
متن کاملExact Solutions to (3+1) Conformable Time Fractional Jimbo-miwa, Zakharov-kuznetsov and Modified Zakharov-kuznetsov Equations
Exact solutions to conformable time fractional (3+1)dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integer orders. The predicted solution of the finite series of a rational exponential function is substituted into this ODE. The resultant polynomial equation is solved by using algebrai...
متن کاملA note on the convergence of the Zakharov-Kuznetsov equation by homotopy analysis method
In this paper, the convergence of Zakharov-Kuznetsov (ZK) equation by homotopy analysis method (HAM) is investigated. A theorem is proved to guarantee the convergence of HAM and to nd the series solution of this equation via a reliable algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chaos
دوره 15 3 شماره
صفحات -
تاریخ انتشار 2005